Multi-Scale Ocean Variability in the Central California Current System
Tongxin (Joyce) Cai, Eric D’Asaro

Applied Physics Laboratory and School of Oceanography, University of Washington
One-Sentence Summary
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Bridging the gap between basin-scale weather and turbulence mixing, this research uses 15 years of
autonomous glider data and satellite images to reveal how atmospheric rivers and mesoscale strain drive the
submesoscale fronts that dissipate the ocean's energy.
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